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It is shown that under ce r ta in  conditions the ra te  of evaporat ion of a liquid is de te rmined  not 
by the evaporat ion kinet ics  of the individual drople ts  but by the ra te  of diffusion of outside a i r  
into the jet  as a whole. 

Most published studies of droplet  evaporat ion a r e  concerned with the individual droplet .  At the same 
t ime,  in technical  appl icat ions it is always n e c e s s a r y  to deal with a sy s t em of evaporat ing drople ts  and, in 
pa r t i cu la r ,  with a s y s t e m  of drople t s  suspended and evapora t ing  in a turbulent s t r e a m  of gas.  

Under these conditions the p rob lem reduces  to the solution of Maxwel l ' s  equation [1] with allowance 
for  the motion of the drople ts  re la t ive  to the gas,  convect ive diffusion, and the var iab le  vapor  concen t ra -  
lion. Obtaining and analyzing the solution would be difficult. This  has prompted  a search  for  s i m p l e r  ap-  
p rox ima te  methods.  

In pa r t i cu la r ,  it is poss ib le  to make use of the fact  that turbulent  diffusion of outside a i r  into the 
s t r e a m  proceeds  at a ce r t a in  ra te  descr ibed  by the equations of the theory of turbulent je ts .  Consequently, 
in ce r ta in  r e g i m e s  of p rac t i ca l  impor tance  droplet  evaporat ion may take place under conditions of "a i r  
s t a rva t ion , "  i. e . ,  under conditions such that the ra te  of evaporat ion is de te rmined  not by the individual- 
droplet  evaporat ion kinet ics  (i. e . ,  not by the ra te  of diffusion of a i r  f r o m  the neighborhood of the droplet  to 
its surface)  but by the ra te  of diffusion of outside a i r  into the jet  as a whole. 

We will e s t ima te  the conditions under which these r e g i m e s  are  real ized.  

According to [2] the admixture  concentrat ion in the main par t  of a submerged  turbulent jet  is given by 

• _ _  •  = 9 , 2 4  R o (•  - -  • (1 _ _  ~ 1,5). ( 1 )  
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The der ivat ion of Eq. (1) was based on the conditions of ident icalness  of the excess  admixture  content 
and universa l i ty  of the taws of admixture  concentrat ion and veloci ty  distr ibution in different  c r o s s  sections 
of the jet  and the re la t ion between the concentrat ion and veloci ty  values  following f rom the Tay lo r  theory of 
f r ee  turbulence,  which has been shown to be in ag reemen t  with the exper imenta l  data; an empi r i ca l  equation 
c lose ly  cor responding  to the exper imenta l  data for  incompress ib le  fluid je ts  was used to desc r ibe  the rune- 
tion de te rmin ing  the d imens ion less  veloci ty  prof i les .  Consequently,  Eq. (1) gives a good descr ip t ion  of the 
exper imenta l ly  observed  dis t r ibut ion of excess  admixture  concentra t ions  in the main pa r t  of submerged  
turbulent  incompress ib le - f lu id  je ts .  Equation (1) is approx imate ly  applicable to the p re sen t  ease  of a two- 
phase jet  at the re la t ive ly  smal l  t e m p e r a t u r e  d i f ferences  cha r ac t e r i s t i c  of droplet  evaporat ion in unheated 
or  weakly heated a i r  and at the modera t e  initial admixture  concentra t ions ,  for  which the effect  of heavy ad- 
mix tures  on the jet  s t ruc tu re  is r e la t ive ly  small;  in o r d e r  to s impl i fy  the calculat ions the cor responding  
co r r ec t ions  given in [2] have been d i s regarded .  

Following the modern  theory of two-phase  je ts  [2], we a s sume  that the number  densi ty of  the drople ts  
tn the main pa r t  of the je t  is given by the express ion  [1] 

9.24 Ron o ~1,5) 
n = -(1 - -  . (2) 
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As a r e su l t  of evapora t ion  the vapor  concen t ra t ion  at an a r b i t r a r y  point of the main jet  r e a c h e s  a c e r -  
tain d e g r e e  of sa tu ra t ion  e s t i m a t e d  by the coeff ic ient  K 

C = KC o. 

F r o m  the m a t e r i a l  ba lance  it fol lows that 

4 ~  
KC o - -  Co = n - -  ( r3o--r a) ,of. (3) 

3 

Here,  it has  been a s s u m e d  that the vapo r  f o r m e d  as a r e su l t  of d rop le t  evapora t ion  r e m a i n s  in the ne igh-  
bo rhood  of the drople t .  Substi tuting the value  of n f r o m  (2) and solving Eq. (3) f o r  r ,  we obtain 

r = r  o [ 1 - - 0 - ' 0 2 6 ( K ~ C ~  ],/s. 
Ronor~ P f (1 - -  ~1.5) (4) 

The d is tance  f r o m  the nozz le  at which d rop le t s  of initial r ad ius  r 0 a r e  comple t e ly  evapora t ed  (r = 0) 

38.7 Ronor~ pf (1 - -  ~,.5) 
x t = = 9.24 (1 - -  ~Ls)BRo, (5) 

KC o - -  C 

w h e r e  B = 47rr~n0Pf/3(KC 0 - Co~) is a d imens ion l e s s  c r i t e r i o n  c h a r a c t e r i z i n g  the ra t io  of the init ial  specif ic  
r a t e  of consumpt ion  of the liquid in the d rop le t s  to the speci f ic  "vapor  capac i t y "  of the jet .  

Even if the evapora t ion  of the d rop le t s  p roceeded  at an infinitely rapid  ra te ,  it could not be comple ted  
at d i s t ances  f r o m  the nozzle  l e s s  than xt; however ,  in this case  the coef f ic ien t  K would be equal to unity.  
Consequent ly ,  at K = 1 the su r f a c e  xt = f(r r e p r e s e n t e d  in the f igure  by a dashed  line, s e p a r a t e s  the in- 
ne r  reg ion  of the main pa r t  of the jet ,  in which evapora t ion  is incomple te  owing to lack of a i r ,  f r o m  the 
ou te r  region,  in which evapora t ion  goes  to comple t ion .  Obviously,  at a r e l a t i ve ly  high evapora t ion  ra te  
{rela t ively smal l  d rop le t  size) in the f i r s t  approx imat ion  it is poss ib l e  to neg lec t  the deviat ion of K f r o m  
unity and a s sume  that evapora t ion  is comple te  at the su r f ace  x t = f(~) with K = 1. In o r d e r  to e s t i m a t e  
the admiss ib i l i t y  of this s impl i f ica t ion  it is poss ib le  to employ  the d i m e n s i o n l e s s  c r i t e r i o n  

E = _T:, (6) 
"r d 

where  ~'t is the r e s i d e n c e  t ime of the d rop le t s  in the inner  reg ion  of the main  pa r t  of the jet  (the t ime r e -  
qui red  to t r ave l  the d i s tance  xt). 

In view of the above -men t ioned  dif f icul t ies  in de te rmin ing  1- t and ~'d, it is poss ib le  to e s t i m a t e  ~'t 
f r o m  Maxwel l ' s  equation [1] (valid fo r  the quas i s t a t i ona ry  evapora t ion  of an individual d rop le t  in st i l l  a i r  
with negl igibly  sma l l  t e m p e r a t u r e  changes)  

2 
p fro 

~d = 2D(Co--C~) (7) 

The quantity "r t can be approximately (without allowance for the differences between droplet and air 
velocities) determined by means of the empirical equation of the theory of turbulent jets [2], which gives 
a good description of the velocity profiles in the main part of a turbulent submerged incompressible-fluid 
jet* 

u _ 12.4Ro.o (1--~"5)2, (8) 
X 

whence  we obtain 

and fo r  x = 0 at r = 0, us ing (5), 

dx 0,0806 xdx 
d r -  

. RoUo (1 - ('~)~' 

0,0403 x~ := 3.44 R o B  2 (9) 

~ = RoU0 (I - -  ~ .~)2  Uo 

*The above r e m a r k s  c o n c e r n i n g  the appl icabi l i ty  of Eq. (1) to a two-phase  jet apply equal ly  to Eq. (8). 
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Fig. 1. Diagram of a turbulent submerged a i r -drople t  
jet; the dashed line represents  the surface x = f(~) sep- 
arattng the inner region of the main par t  of the jet, in 
which evaporation is incomplete owing to lack of air, f rom 
the outer region, in which evaporation goes to comple-  
tion. 

Substituting these values of r t and r d in (6), we find 

6,88 RoDB 2 (C O - -  C~) 6,88 RoD9 f (O f lQ~ ~ 
E = - -  = -  o (10) 

p f uor~ (Co - -  C~) .or~ 

It follows f rom Eq. (10) that E is the greater ,  the g rea te r  the initial radius of the jet and the specific 
liquid flow rate and the smal le r  the initial velocity of the jet and the droplet diameter .  

Obviously, at E >> 1 it is possible to employ Eqs. (4) and (5) for approximate droplet evaporation ca l -  
euiattons. At E << 1 the degree of evaporation of the droplets in the main par t  of the jet is only slight, 
evaporation takes place ehiefly outside the jet* and evaporation in the jet can be neglected. In the inter-  
mediate region it is neces sa ry  to determine the corresponding values of K experimentally.  

We have considered evaporation proceeding under conditions such that temperature  changes can be 
neglected. A s imi la r  approach is possible in the presence  of nonisothermal evaporation in the jet; in this 
ease it is neces sa ry  to take the heat balance and the temperature  dependence of the vapor tension into ac-  
count. 

N O T A T I O N  

r is the droplet  radius; 
r 0 is the initial droplet radius; 
D is the vapor  diffusion coefficient in air; 
pf is the liquid density; 
C O is the saturated vapor concentration; 
Coo is the vapor  concentration in the surrounding atmosphere;  
r is time; 
u is the air  velocity in the jet in the direction of the x axis; 
R 0 is the initial radius of the jet; 
u 0 is the velocity in the initial section of the jet; 
x is the distance f rom the nozzle (from the initial section of the jet), m; 

= y/0.22x 
y is the distance f rom the jet axis, m; 
n is the number density of the droplets  in the jet; 
n o is the initial number density; 

is the admixture concentrat ion in the jet; 
4 0 is the initial admixture concentration; 

*Theoretically the jet is of infinite extent, but in pract ice  its l imits are definite enough. 
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zoo is the admixture concentration in the surrounding atmosphere; 
T d iS the droplet evaporation time; 
Qf is the liquid flow rate; 
Qa is the air flow rate. 
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